Mathematik in den Naturwissenschaften Leipzig Relaxation of three solenoidal wells and characterization of three - phase H - measures

نویسندگان

  • Valery P. Smyshlyaev
  • V. P. SMYSHLYAEV
چکیده

We study the problem of characterizing quasiconvex hulls for three “solenoidal” (divergence free) wells in dimension three when the wells are pairwise incompatible. A full characterization is achieved by combining certain ideas based on Šverák’s example of a “nontrivial” quasiconvex function and on Müller’s wavelet expansions estimates in terms of the Riesz transform. As a by-product, we obtain a new more general “geometrical” result: characterization of extremal three-point H-measures for three-phase mixtures in dimension three. We also discuss the applicability of the latter result to problems with other kinematic constrains, in particular to that of three linear elastic wells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Relaxation of three solenoidal wells and characterization of three phase H-measures

We study the problem of characterizing quasiconvex hulls for three “solenoidal” (divergence free) wells in dimension three when the wells are pairwise incompatible. A full characterization for a generic regime is achieved by translating the problem into the language of H-measures, following recipes of Kohn and Smyshlyaev & Willis, in combination with certain ideas based on Šverák’s example of a...

متن کامل

Relaxation of Three Solenoidal Wells and Characterization of Extremal Three-phase H-measures

We fully characterize quasiconvex hulls for three arbitrary solenoidal (divergence free) wells in dimension three. With this aim we establish weak lower semicontinuity of certain functionals with integrands restricted to generic twodimensional planes and convex in (up to three) rank-2 directions within the planes. Within the framework of the theory of compensated compactness, the latter represe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007